РынокТехнологии

Создан новый метод 4D-моделирования зданий при помощи машинного обучения

Екатерина Александрова | 25.02.2021

Создан новый метод 4D-моделирования зданий при помощи машинного обучения

Метод поможет не только предсказывать высоту зданий на основе их геометрических параметров, данных о районе и категории здания, но и получать более полную информацию о различных явлениях и изменениях в городской среде, сыгравших важную роль в формировании современного облика городов.

Ученые из «Сколтеха» и исследовательского института FBK (Италия) представили методику, позволяющую создавать 4D-модели зданий с помощью исторических карт и машинного обучения.

С ее помощью можно не только предсказывать высоту зданий на основе их геометрических параметров, данных о районе и категории здания, но и получать более полную информацию о различных явлениях и изменениях в городской среде, сыгравших важную роль в формировании современного облика городов. Результаты исследования опубликованы в журнале MDPI Applied Sciences.

Наиболее важным источником информации для анализа изменений в городской застройке являются исторические карты. Однако на них трехмерный мир представлен в двухмерном пространстве, которое лишь отражает главные особенности городской среды, не учитывая пространственную информацию и, в частности, данные о высоте зданий. В приложениях для 3D/4D-моделирования городской среды на основе исторических данных отсутствие информации о высоте зданий – главная проблема, не позволяющая добиться требуемой точности в представлении, анализе, визуализации и моделировании объемного пространства.

Ученые из «Сколтеха» и отдела 3DOM института FBK в Тренто исследовали возможности решений на основе машинного обучения по определению высоты зданий при помощи исторических карт местности.

Разработанный метод протестировали на четырех исторических картах Тренто (1851, 1887, 1908 и 1936 гг.) и Болоньи (1884 и 1945 гг.), на которых отражены наиболее существенные изменения в городской застройке за последние столетия, и восстановили динамические 4D-версии этих городов.

«Разработанная нами методика обучения и предсказания, протестированная на исторических данных, оказалась эффективной и перспективной для целого ряда других приложений. Пока для предсказания используется небольшое число характерных признаков, но в ближайшее время мы планируем обобщить методику для решения реальных задач в условиях отсутствия данных о высотах рельефа местности. Разработанные при помощи этой методики модели позволят восполнить нехватку геопространственных данных при исследовании исторических и труднодоступных ландшафтов», – рассказывает аспирант «Сколтеха» и FBK в Тренто Эмре Оздемир.

Технопарк "Сколково" Машинное обучение BIM


Поделиться:

ВКонтакт Facebook Google Plus Одноклассники Twitter Livejournal Liveinternet Mail.Ru

Также по теме

Другие материалы рубрики

Мысли вслух

Десять лет назад мы говорили о будущем цифры и управления с Пеккой Вильякайненом - технологическим предпринимателем и опытным инноватором. То будущее, о котором мы говорили тогда, наступило. День за днем, со скоростью времени.
Согласно прогнозам Gartner, к 2022 г. 75% организаций, использующих инфраструктуру как сервис (IaaS), будут реализовывать продуманную мультиоблачную стратегию, в то время как в 2017 г. доля таких компаний составляла 49%.
Все жалуются на нехватку времени. Особенно обидно, что его не хватает на самые важные вещи. Совещания, созвоны, подготовка внутренних отчетов, непонятно, насколько нужных, но которые начальство требует так, как будто это именно то, ради чего мы работаем.

Компании сообщают

Мероприятия

ТехноКлуб «Дефицит чипов: как выжить в новой реальности?»
Зеленоград, конгресс-центр ОЭЗ «Технополис Москва»
Бесплатно
04.08.2021
10:30
У лояльных хмурый день светлей.
ОНЛАЙН
09.08.2021 — 10.08.2021
19:00
Международная конференция по информационной безопасности ZeroNights
Санкт-Петербург, Кожевенная линия, 40, «Севкабель Порт»
3 490 руб
25.08.2021
09:00–23:00
Конференция «Кадровый ЭДО: цифровизация на практике»
Москва, отель Метрополь, Театральный проезд, 2
25.08.2021
09:30–17:00