Компании сообщаютМероприятия

Чьи стратегии окажутся более эффективны – менеджеров или искусственного интеллекта

| 20.04.2021

Чьи стратегии окажутся более эффективны – менеджеров или искусственного интеллекта

Как искусственный интеллект влияет на доходность ритейла и e-commerce.Как технологии искусственного интеллекта помогают прогнозировать спрос, делать персонализированные предложения, выбирать стратегию ценообразования и оставаться конкурентоспособным обсудили участники онлайн-эфира Ведомостей «Новая реальность ритейла и e-commerce».

Искусственный интеллект поможет ритейлерам заработать на рекламе

Искусственный интеллект способствует увеличению среднего чека, делает сервис быстрее за счет автоматизации процессов, помогает прогнозировать спрос в магазинах. Однако это не предел — по словам Дениса Голованова, директора по работе с крупными клиентами «Билайн Бизнес», скоро ритейлеры смогут стать частью рекламного бизнеса и зарабатывать на таргетированной рекламе внутри своих торговых точек. Пилотный проект, где персонализированная реклама сопровождает клиента на всём пути от входа магазина до кассы, запущен в партнёрстве с крупнейшими федеральными FMCG-сетями.

Персональные предложения показываются на экранах на входе в магазин, прайсчеккерах и на дисплеях покупателя на кассе. При большом потоке людей в магазине выбираются аудитории, на которые есть запрос у рекламодателя. Решение позволяет выстроить очередность показа предложений в зависимости от стоимости аудиторий. Заработок ритейлера будет зависеть от категории ритейла, аудитории, мест размещения рекламного инвентаря и его типа. Одна торговая точка в FMCG-ритейле сможет приносить от 10 000 до 40 000 руб. в месяц. «Билайн Бизнес» помогает заказчикам выстроить инфраструктуру и монетизировать направление.

В эпоху цифровой трансформации важна скорость изменений бизнеса

Битву за потребителя в 2020 г. выиграли компании, которые смогли быстро запустить востребованные сервисы. Вырос спрос на выдачу заказов на парковках торговых центров, доставку заказов на такси к удобной клиенту точке, расширение пунктов выдачи за счет партнерских сетей, новые системы лояльности и рекомендательные модели сайтов и приложений. Цифровая зрелость компании выражена в возможности быстро реагировать на изменения рынка и внедрять новые IT продукты, считает Павел Голубин, руководитель по работе с сектором retail и eCommerce Yandex.Cloud.

Трудности большинства компаний кроются в сложности устаревших IT архитектур и нехватке экспертизы внутренних команд. Ускорить внедрение новых сервисов и продуктов, вывести их на рынок помогут компаниям технологические партнеры. Надежная и легко масштабируемая инфраструктура поможет уменьшить время вывода сервиса на рынок в несколько раз.

Геоаналитика востребована в пандемию

Геоаналитика – это сервис, который использует пространственную информацию, технологии машинного обучения и анализа больших данных для решения коммерческих задач. Основная польза для ритейла – поиск и оценка локации, которая принесет ритейлеру максимальную выручку. На основе анализа внутренних и партнерских данных сервис может спрогнозировать клиентский трафик, чек и товарооборот.

До качественного искусственного интеллекта пока далеко. Не все данные оцифрованы даже у крупных ритейлеров. Кроме внешних сплошных данных, которые уже собраны, нужно думать над внутренними данными, влияющими на товарооборот. Например, цифровать показатели, связанные с продавцами, скоростью их работы, – рассказал генеральный директор Geointellect Денис Струков.

Согласно исследованию «Билайн Бизнес», пандемия сделала сервис геоаналитики наиболее востребованным. Например, во время самоизоляции потребители изменили места пребывания в течение дня и форматы проведения свободного времени, в частности, стали меньше посещать крупные магазины, отмечает Денис Голованов. Big Data «Билайн» помог ритейлерам найти новые места размещения торговых точек вблизи своих потребителей, а также адаптировать сервисы доставки и работу пунктов выдачи.

Искусственный интеллект в ценообразовании и прогнозе продаж

В 2018 г. компания «Лента» начала увеличивать точность прогноза продаж. Контролировать спрос и объем закупок ритейлер стал с помощью технологии машинного обучения (ML). Сегодня это наиболее эффективный подход к использованию Big Data для принятия решений. Компания уже имела промышленное решение, которое показывало отличные результаты. Однако сеть стремилась к еще более точным прогнозам, было принято решение создать собственную модель прогнозирования, учитывающую специфику «Ленты». Это позволило компании уменьшить списание продуктов, повысить точность прогноза во время пандемии и автоматизировать решения по регулярным промо-акциям, – поделился директор по управлению IT-системами компании «Лента» Андрей Тарасов.

При реализации проекта команда столкнулась с рядом трудностей. Например, ML требует больших вычислительных мощностей – здесь желательно партнерство с облачными сервисами. Также на повестке стоит и кадровый вопрос – как находить экспертов, обладающих хорошей математической базой и понимающих бизнес-процессы компании? Затраты на технологию существенные, но полностью окупаются, – отметил эксперт.

Искусственный интеллект помог выбрать стратегию ценообразования для DIY-сети торгового дома «Вимос». Изначально сеть использовала стратегию, при которой клиенту предлагалась самая низкая цена на рынке. Когда выбранная бизнес-модель привела к снижению маржи до минимума, компания решила внедрить систему умного ценообразования на основе искусственного интеллекта.

Решение было рискованным для компании, так как требовало колоссальных трат, однако инвестиции себя оправдали – рост дохода во время реализации пилотного проекта составил 6%, рассказывает Лидия Виноградова, вице-президент компании. Искусственный интеллект помог определить, к каким категориям товаров покупатели менее чувствительны и сбалансировать модель ценообразования. По итогам трех месяцев работы пилотного проекта затраты на него окупились и даже превысили целевые показатели, в связи с чем было принято решение о масштабировании программного обеспечения на всю сеть магазинов.

Согласно исследованию PwC, самые распространенные задачи, которые компании решают с использованием искусственного интеллекта – управление рисками и предотвращение потерь (ответили 40% респондентов), автоматизация рутинного процесса (35%), сбор и прогнозирование данных, помощь сотрудникам (30%).

Компании, которые уже начали внедрять инструменты на базе искусственного интеллекта, получают преимущества и вырываются в лидеры рынка, – подытожил Иван Федяков, генеральный директор InfoLine.



Поделиться:

ВКонтакт Facebook Google Plus Одноклассники Twitter Livejournal Liveinternet Mail.Ru

Мысли вслух

Все жалуются на нехватку времени. Особенно обидно, что его не хватает на самые важные вещи. Совещания, созвоны, подготовка внутренних отчетов, непонятно, насколько нужных, но которые начальство требует так, как будто это именно то, ради чего мы работаем.
Сейчас мы вступаем в следующую фазу выздоровления и восстановления, но гибридный мир никуда не денется
В России опрос показал: 48% составляют технооптимисты, а больше половины – технофобы и техноскептики.

Компании сообщают