Компании сообщаютПроекты

Deepfakes Lab: распознавание дипфейков и защита от них с помощью ИИ

| 01.12.2020

Cпособность изменять реальность совершила рывок вперед с появлением технологии «дипфейков», которая позволяет создавать изображения и видео, где реальные люди произносят или делают то, чего они никогда не говорили и не делали. Методы глубокого обучения повышают уровень детализации этой технологии, создавая еще более реалистичный контент, который становится всё сложнее распознать.


Дипфейки начали привлекать к себе внимание, когда в конце 2017 г. фейковое «видео для взрослых» с участием актрисы фильма «Чудо-женщина» было выложено на Reddit пользователем с ником «deepfakes». Затем было выпущено несколько смонтированных видеороликов с участием звезд первой величины, некоторые из которых носили исключительно развлекательный характер, а другие — выставляли знаменитостей в унизительном свете. Все это представляет собой реальную угрозу.

Дипфейки существенно усугубят эту проблему. Знаменитости, политики и даже бренды могут столкнуться с беспрецедентными угрозами, от запугивания до умышленного подрыва имиджа. Не менее серьезны риски, которым подвергается наше правосудие, политика и национальная безопасность. Дипфейки могут затронуть все сферы жизни, следовательно, элементарная защита от них принципиальна важна.

Дипфейки — результат достижений в сфере искусственного интеллекта, к которому нередко прибегают злоумышленники, использующие эту технологию для генерации всё более реалистичных и убедительных фальшивых изображений, видео, голосовых записей и текстов. Эти видео создаются путем наложения существующих изображений, аудио и видео на исходные медиафайлы с помощью передового метода глубокого обучения (deep learning) под названием «генеративно-состязательные нейросети» (ГСС). ГСС — относительно новая концепция в области ИИ, целью которой является синтез искусственных изображений, неотличимых от подлинных. В методике ГСС одновременно задействованы две нейросети: одна сеть, называемая «генератор», использует набор данных для создания образца, имитирующего их. Другая сеть, известная как «дискриминатор», оценивает, насколько генератору это удалось. При многократном повторении оценки дискриминатора оказывают влияние на оценки генератора. Прогрессирующее совершенствование методики ГСС привело к созданию ещё более убедительных дипфейков, которые практически невозможно разоблачить, и результат намного превосходит по скорости, масштабу и точности тот, которого могли бы достичь люди-эксперты.

Чтобы минимизировать эту угрозу, компания McAfee запустила McAfee Deepfakes Lab. Ее цель — сосредоточить высококлассные инструменты и экспертные знания в области анализа и обработки данных на противодействии угрозе дипфейков для отдельных людей, организаций, демократии и в целом для достоверности информации в нашем обществе. Deepfakes Lab сочетает в себе компьютерное зрение и методы глубокого обучения для анализа и расшифровывания скрытых закономерностей и распознавания элементов фальсифицированных видео, которые играют ключевую роль в аутентификации подлинных медиафайлов.

Чтобы обеспечить понятность результатов прогнозирования фреймворка глубокого обучения и источника решения, для каждого прогноза, компания потратила немало времени на визуализацию слоев и фильтров сетей, а затем добавила модельно-независимый фреймворк с объяснительной способностью поверх фреймворка для распознавания. Наличие объяснений для каждого прогноза помогает принять обоснованное решение о том, насколько мы уверены в достоверности изображения и модели, а также получить данные, которые могут быть использованы для ее улучшения.

Специалисты компании также провели всестороннюю валидацию и верификацию фреймфорка для распознавания на большом наборе данных и протестировали возможности обнаружения на дипфейках, найденных на просторах интернета. Фреймворк для распознавания смог обнаружить недавнее дипфейк-видео с главой Facebook Марком Цукербергом, выступающим с короткой речью о возможностях больших данных. Этот инструмент не только представил точную оценку распознавания, но и сгенерировал тепловые карты с помощью модельно-независимого объясняющего модуля, выделив те участки его лица, которые способствовали принятию решения, тем самым повышая доверие к прогнозам компании.

Подобные легкодоступные дипфейки подтверждают проблемы, с которыми сталкиваются социальные сети, когда дело касается контроля за сфабрикованным контентом. Поскольку развитие методики ГСС позволяет создавать очень реалистичные поддельные изображения, необходимо будет разработать усовершенствованные методы компьютерного зрения для выявления и распознавания более сложных типов дипфейков. Кроме того, необходимо принять меры по защите от дипфейков с помощью водяных знаков (вотермарков) или аутентификационного следа.

Правдоподобные, но сфальсифицированные аудио, видео и тексты будут иметь огромное влияние, которое может быть использовано для того, чтобы испортить репутацию знаменитости или бренда, а также воздействовать на политические убеждения с ужасающими последствиями. Компьютерное зрение и фреймворки для обнаружения дипфейков на основе глубокого обучения способны аутентифицировать и распознавать поддельные визуальные медиа и текстовые материалы, но ущерб репутации и влияние на общественное мнение, тем не менее, остаются.

PR Partner


Поделиться:

ВКонтакт Facebook Google Plus Одноклассники Twitter Livejournal Liveinternet Mail.Ru

Мысли вслух

Как бизнес и учебные заведения адаптируют образование к новым реалиям экономики?
Попробуйте представить ощущения, когда ты занимаешься, вроде бы, прорывными вещами, а тебе объясняют "это, парень, тенденция вчерашнего дня".
Возникает понятное желание поразбираться, иногда на это нужны несколько лет.
Как культура поведения удаленных пользователей влияет на кибербезопасность организации

Компании сообщают

Мероприятия