Робот Michelle анализирует поведение клиентов в магазине

Логотип компании
Робот Michelle анализирует поведение клиентов в магазине
Ученые Сколтеха предложили новый метод анализа поведения покупателей c помощью робота, проводящего автономную инвентаризацию, используя радиочастотные метки.

Ученые под руководством профессора Космического центра Сколтеха (Лаборатория интеллектуальной космической робототехники) Дмитрия Тетерюкова предложили метод, который позволяет строить модели, отражающие зависимость спроса от местоположения товаров и определять области откуда товары с наименьшей вероятностью купят, а также находить потерянные и перемещенные предметы.

Робот следит за покупателями, определяет наиболее привлекательные для них расположения товаров и прогнозируют спрос. Это дает продавцу информацию о каждой позиции в магазине, которую можно использовать при размещении товаров. Для магазинов это хороший способ повысить продажи и прибыль. Робот, оборудованный массивом RFID-антенн, считывает данные с радиочастотных меток, которыми оснащены товары и передает результат инвентаризации в систему управления складом (WMS).

«Существующие решения не применимы к реальным ситуациям в розничной торговле, что может привести к неожиданной потере продаж. Предлагаемое нами решение дает исчерпывающих информацию о распределении спроса в торговом зале с помощью мобильного робота для автономной инвентаризации магазинов, в которых товары промаркированы RFID метками. Наше исследование отличается тем, что мы оперируем большим объемом исходных данных, собранных в реальной среде в период продолжительностью более десяти месяцев», – рассказывает один из разработчиков из Космического центра Сколтеха Александр Петровский.

«В Сколтехе мы разработали автономный робот Michelle с поддержкой технологии RFID для сети магазинов Decathlon. Робот позволяет значительно снизить число ошибок считывания RFID-меток, обусловленных человеческим фактором, а также ускорить и удешевить процесс инвентаризации. Мы решили воспользоваться большими данными, собранными за длительный период эксплуатации робота в магазине, в частности, для оценки изменений в плотности RFID-меток по всему торговому залу. Сначала мы предложили вероятностную модель оценки местоположения меток с точностью до 0,3 метра, а затем построили карту динамики плотности меток, на которой четко обозначены зоны в торговом зале, где покупатели приобретают наибольшее и наименьшее количества товаров. Полученные результаты очень важны для ретейлеров с точки зрения поиска более удачных схем размещения товаров с целью максимизации прибыли от продаж и прогнозирования динамики сезонного спроса», − рассказывает профессор Сколтеха Дмитрий Тетерюков.

Разработанный подход применим к любому торговому залу, где товары промаркированы RFID-метками.

Читайте также
Как российский рынок инфраструктурных решений для ИИ пережил уход западных вендоров, какие ресурсы для развертывания технологии имеются сегодня, не грозит ли нам зима ИИ, и как мы будем жить при «Экономике данных» - все это представители ведущих технологических компаний обсудили в рамках прошедшего сегодня круглого стола IT-World.

Похожие статьи